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Abstract

In this paper we propose an improvement of the Kolmogorov-Smirnov test for normality. In
the current implementation of the Kolmogorov-Smirnov test, given data are compared with a
normal distribution that uses the sample mean and the sample variance. We propose to select
the mean and variance of the normal distribution that provide the closest fit to the data. This
is like shifting and stretching the reference normal distribution so that it fits the data in the
best possible way. A study of the power of the proposed test indicates that the test is able to
discriminate between the normal distribution and distributions such as uniform, bi-modal, beta,
exponential and log-normal that are different in shape, but has a relatively lower power against
the student ¢-distribution that is similar in shape to the normal distribution. We also compare
the performance (both in power and sensitivity to outlying observations) of the proposed test
with existing normality tests such as Anderson-Darling and Shapiro-Francia.

Keywords: Closest fit; Kolmogorov-Smirnov; Normal distribution.

1 Introduction

Many data analysis methods depend on the assumption that data were sampled from a normal
distribution or at least from a distribution which is sufficiently close to a normal distribution. For
example, one often tests normality of residuals after fitting a linear model to the data in order
to ensure the normality assumption of the model is satisfied. Such an assumption is of great
importance because, in many cases, it determines the method that ought to be used to estimate
the unknown parameters of a model and also dictates the test procedures which analysts may

apply. There are several tests available to determine if a sample comes from a normally distributed
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population. Those theory-driven tests include the Kolmogorov-Smirnov test, Anderson-Darling
test, Cramer-von Mises test, Shapiro-Wilk test and Shapiro-Francia test. The first three tests are
based on the empirical cumulative distribution. Shapiro-Francia test (Shapiro and Francia, 1972
and Royston, 1983) is specifically designed for testing normality and is a modification of the more
general Shapiro-Wilk test (Shapiro and Wilk 1965). There are also tests that exploit the shape of
the distribution of the data. For example, the widely available Jarque-Bera test (Jarque and Bera,
1980) is based on skewness and kurtosis of the data. To complement the results of formal tests,
graphical methods (such as box-plots and Q-Q plots) have also been used and increasingly so in

recent years.

In this paper we focus on the Kolmogorov-Smirnov (KS) test. The KS test is arguably the most
well-known test for normality. It is also available in most widely used statistical software packages.
In its original form, the KS test is used to decide if a sample comes from a population with a
completely specified continuous distribution. In practice, however, we often need to estimate one
or more of the parameters of the hypothesized distribution (say, the normal distribution) from the
sample, in which case the critical values of the KS test may no longer be valid. For the case of
normality testing, Massey (1951) suggests using sample mean and sample variance, and this is the
norm in the current use of KS test. Lilliefors (1967) and Dallal and Wilkinson (1986) provide a
table of approximate critical values of the KS statistics which are based on sample mean and sample

variance.

While the use of sample mean and sample variance seems a natural choice, using these values is
not necessarily the best available option. When one concludes (after using the KS test) that given
data are not normal, this only means that the data are not normal with the sample mean and

sample variance. But it could well be that the data are normal or sufficiently close to normal at



other values of the mean and variance of the normal distribution. Although the scope of this paper
is limited to the KS test, this drawback is also shared by other tests such as Anderson-Darling
and Cramer-von Mises tests. Interestingly, Stephens (1974) writes after comparing several tests
(such as KS, Anderson-Darling and so on) “It appears that since one is trying, in effect, to fit a
density of a certain shape to the data, the precise location and scale is relatively unimportant, and
being tied down to fixed values, even correct ones, is more of a hinderance than a help.” In this
paper, we suggest an approach that circumvents the need to use sample mean and sample variance
of given data. Instead, we look for mean and variance values such that the corresponding normal
distribution provides the closest fit to the empirical distribution of the data. When the KS test
with such values still shows deviation from normality, we conclude that the data are probably not

sampled from a normal distribution.

Suppose that the sample consists of n independent observations. These observations are sorted
r1 < 29 < ... < x,. The cumulative distribution of the data is a step function where the step
k—1

is between “— and % at each zj,. On the other hand, for given mean p and variance o2, the

cumulative normal distribution at x; is ® (%) The KS statistics is defined as

1<k<n (N

KS(p,0) = max {E—@<m>,®<xk_ﬂ)—k_l}. (1)

The traditional KS statistics is simply K.S(z,s). We propose a modified KS statistics denoted by

K S(fi,6) where the vector (f1,6) is a solution to the following minimization problem

min {5 (s,)} @

where KS(u,0) is as given in (1). In the Appendix, we analyze this optimization problem and



provide a tractable algorithm for its solution. The proposed algorithm is quite efficient and we
are able to compute the critical values of the modified KS test using 100 million replications (see

Table 1) in less than 4 days, i.e. 6000 calculations per second.

To the best of our knowledge there has not been any study that extends the KS test by allowing
the use of optimized distribution parameters. Closely related to our approach is the work of Weber
et al (2006) in which they consider the problem of parameter estimation of continuous distributions
(not just normal distribution) via the minimization of the KS statistics. They use the heuristic
optimization algorithm of Sobieszczanski-Sobieski et al (1998) to estimate the parameters of a
number of widely used distributions and also provide a user-friendly software tool. The practical
advantage of this software is that it suggests a best fitted distribution to given data by looking
at the minimized KS statistics values among a set of continuous distributions. In this sense, our
algorithm of minimizing the KS statistics may also serve the same purpose as that of Weber et al

(2006) although our paper is wider in scope.

In Section 2 we compute critical values for the modified KS statistics using Monte Carlo simula-
tion. Section 3 provides comparison of the approximate powers of the modified KS test with the
traditional KS test (and other existing tests) for a set of selected distributions. We also investigate
the sensitivity of the various tests to the presence of moderately outlying observation. Section 4
concludes. In the Appendix we provide a tractable algorithm for implementing the modified KS

statistics.

2 Monte Carlo estimation of test statistics distribution

Monte Carlo simulation is used to compute critical values for the modified KS statistics. We draw a

random sample of size n from a standard normal distribution and estimate fi, & and KS(ji,). For



every n, we repeat this procedure 100 million times. The critical values are given in Table 1. We
also recalculate the critical values for the traditional KS test in the same way and they are available
in Table 1. Because we use 100 million samples, the critical values we report for the traditional KS

test are more accurate than Lilliefors (1967) and Dallal and Washington (1986).
Table (1) about here

The critical values for both K.S tests can also be approximated for n > 20 by the formula a +

b (1- %) where a, b and ¢ are functions of a. These three parameters are given in Table 2.

Jn
The approximation is very accurate with an error (when compared to Table 1) of not more than
0.0002. Thus, the approximation formula can replace the tables for n > 20. We obtain the
approximation formula via multiple regression, where for each «, the critical values in Table 1 are
used as the dependent variable, and ﬁ and n—\l/ﬁ are the independent variables. We select these
two independent variables through experimentation. We begin with a single variable regression
involving only ﬁ We then add variables, one at a time, which are functions of n. A regression

involving % and n—\l/ﬁ provides an excellent fit. For example, the adjusted R-squared is greater

than 99% for all a values reported in Table 2.

Table (2) about here

3 Numerical results

In this section we use Monte Carlo simulation to evaluate the relative performance of the proposed
test among existing tests of normality. First, we compare the approximate power of the modified
KS test with the traditional KS test for a set of selected distributions that convey a wide array of

shapes where some resemble the normal distribution while others are substantially different. To



put the power comparison between the modified KS and traditional KS tests within the context of
other existing tests of normality, we also include the following four tests that are widely available in
statistical packages: Anderson-Darling (AD), Cramer-von Mises (CVM), Shapiro-Francia (SF) and
Pearson chi-square (PEARSON). Second, we explore how the above tests of normality behave (in
terms of their rejection probabilities or size ) in the presence of moderately outlying observations.
In practice, researchers often deal with small data sets with potentially few outlying (moderate or
extreme) observations while much of these data may well be approximately normal. In situations
like this, a particular test may suggest rejection of normality implying the potential need for

transformations or complex models.

3.1 Power comparisons

In the power comparisons we consider a uniform (0,1) distribution; a bi-modal distribution which
is a composite of two normal distributions, one centered at +2 and one at -2 with variance of 1;
a beta(1,2) distribution whose density function is a straight line connecting (0, 0) and (1, 1); an
exponential distribution with mean and variance of 1; a log-normal distribution with mean e'/2 and
variance e(e — 1) and three t-distributions with degrees of freedom 1, 2 and 6. Some of these distri-
butions are also used in Lilliefors (1967) and Stephens (1974), among others. For a given alternative
hypothesis (say, a uniform distribution), computation of the power of the modified KS test is done
as follows. We draw a random sample of size n (n = 10,20, ---,100) from the distribution specified
in the alternative hypothesis. Based on this sample, we estimate the parameters &t and & using the
algorithm outlined in Appendix and compute K.S(fi,5). Then, we apply the critical values in Table
2 to test if such sample comes from a normal distribution. Repeating this procedure 10,000 times,
and counting the number of correct decisions gives the approximate power. The same approach is

followed for computing power for traditional KS, AD, CVM, SF and PEARSON tests. We use the



library NORTEST available in the software R to implement AD, CVM, SF and PEARSON. For
better exposition we present the complete power results in graphic form in Figure 1. To save space,

we only report results for o = 0.05 (the behavior is very similar for other values of «).

From Figure 1 we can see that the power of the modified KS test is consistently better than both the
traditional KS and PEARSON tests for uniform, beta and bi-modal distributions. For beta and bi-
modal shapes, the modified KS also performs reasonably well overall in comparison to AD, SF and
CVM tests, especially for n < 30. For exponential and log-normal distributions, the power of the
modified KS test is lower than the traditional KS test for n < 30 although the two powers converge
when n > 40. For these two distributions, all the considered tests have similar powers for n > 50.
At smaller samples, the powers of the two KS tests lag behind other tests. For the ¢-distributions,
the modified KS test has the lowest power among all the tests including the traditional KS test.
For t1 case, we excluded CVM from the analysis because it is very sensitive to large outliers and
increasingly so for large sample sizes. This effect is also slightly reflected in t5 where the power start
to decrease for n > 80. What is common to the ¢-distributions is that they resemble the normal
distribution except for their heavier tails. In theory, with increasing degrees of freedom, the tails
of the t-distribution get lighter and eventually behave like a normal distribution. The modified KS
test has difficulty detecting non-normality when the observed distribution is similar to normal and

increasingly so with larger degrees of freedom, i.e. as it gets closer to normal.

Figure (1) about here

On the surface, the low power for the t-distribution may seem like a weakness of the modified
KS test. However, would one expect, with a small n, that data generated by a tg distribution be
distinguishable from a normal distribution - thus be identified as non-normal? We argue that the

reason the traditional KS test and the other tests have better power is that they rejects data which



can be fitted quite well to a normal distribution by a proper selection of 4 and o. It is surprising
that the power of the traditional KS test is higher for a to distribution than it is for the uniform
and beta distributions while the latter are substantially different from normality. In contrast, the
modified KS test tries to look for those mean and variance values that lead to the closest fit to the
data. In a way, we are trying to approximate the reference distribution (the t-distribution) with a
normal distribution. If such a normal approximation exists, the data may be considered sufficiently
normal. For example, for tg, the powers of the modified KS are close to o = 0.05 implying the
sample data is hardly distinguishable from the normal distribution. When the degrees of freedom
is made smaller, the power of the modified KS test improves because the deviation from normality
gets larger. When normal approximation can not be achieved, the sample data is flagged as non-
normal. For t5, the modified KS test requires about n = 200 (not shown in the graphs) to detect
non-normality while ¢4 requires an extremely large n to be detected by the modified KS test. For 1,
the power of the proposed KS test gets a lot better reaching decent power at n = 100. The reason
is that ¢; has a much heavier tail than the normal distribution making normal approximation via

adapting mean and variance values very difficult.

To summarize, the modified KS test is able to better discriminate between the normal distribution
and those distributions that are very different in shape from normal. For such distributions that
substantially deviate from normality, the modified KS test has an overall better power than the
traditional KS test while performing reasonably well among existing tests. However, the modified
KS test has the weakest power among all tests in detecting non-normality when the shape of a

distribution resembles a normal distribution.



3.2 Sensitivity of tests

Here we evaluate all the tests included in the above power comparison in terms of their size sensi-
tivity (at a = 0.05). We consider n = 10,20, ...,100 (in intervals of 10). For each n, we generate
10,000 standard normal random observations. If a test is correctly sized, we expect this percentage
to be close to 5%. Size is defined as the percentage of times (out of the total 10,000 samples)
a test rejects the null hypothesis of normality. We also analyze (for each n) two adjustments of
the normally generated data where we randomly replace one of the n observations by a constant
C: (1) C=3 and (2) C=3.25. Although these two values are considered outlying observations for
a standard normal case, they are not necessarily uncommon and the purpose is to mimic what
can happen in practice. Especially for n that is relatively large, we wish the size of a test to be

insensitive to the presence of outlying observations.

Using 10,000 replications, we plot the size of all the tests in Figure 2. When no outlying observation
is added, all tests have sizes close to 5% although PEARSON and SF seem to over-reject relative
to the other tests. Interestingly, when an outlying observation is included, the modified KS test
is quite insensitive and remains close to the 5% level while all other tests over-reject even for a
relatively large n. With the observed pattern, it will take a very large n to alleviate the effect
of the outlying observations which are not even that extreme. In practice, researchers often deal
with small data sets that include one or more observations that contribute to the rejection of
normality when existing tests of normality are applied. The above analysis shows that existing
tests of normality are sensitive to even moderately outlying observations. In contrast, the modified

KS test is fairly robust and can lead to a more nuanced judgments regarding normality.

Figure (2) about here



4 Conclusion

Many data analysis methods (t-test, ANOVA, regression) depend on the assumption that data were
sampled from a normal distribution. One of the most frequently used tests to evaluate how far data
are from normality is the Kolmogorov-Smirnov (KS) test. In implementing the KS test, statistical
software packages use the sample mean and sample variance as the parameters of the normal
distribution. We propose a modified KS test in which we optimally choose the mean and variance
of the normal distribution by minimizing the KS statistics. Power comparison with the traditional
KS test show that the modified KS test is better than the traditional KS test for distributions that
are substantially different in shape from the normal distribution, and performs reasonably well
among other existing normality tests (i.e. Anderson-Darling, Cramer-von Mises, Shapiro-Francia,
and Pearson chi-square). However, the modified KS test is rather weak in detecting non-normality
for those distributions that resemble normality. We also explore the sensitivity of the various tests
of normality (in terms of their rejection probabilities or size ) to the presence of moderately outlying
observations. The modified KS test is fairly robust while all other tests are very sensitive, leading

to over-rejection even for large samples.

One possible direction for future research is to extend our idea to the Anderson-Darling (AD) test.
Because the current implementation of the AD test uses the sample mean and sample variance as
parameters of the normal distribution, it shares the same shortcoming of the traditional KS test.
For example, one can modify the AD test by using mean and variance values that minimize the AD
statistics and create a corresponding critical values table. Because the AD test is among the most
powerful available tests, such simple modification can make it even more attractive for practitioners

by further increasing its power and making it less sensitive to outlying observations.
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Appendix: Algorithm

Here, we analyze the optimization problem given in equation (2) and provide a tractable algorithm

for its solution. By (1)

KS(uo) > -0 (ZL)
n g

Let L be the minimum possible value of KS(u,o0). The solution to the following optimization

problem is the minimum possible KS(u, o) and thus is equivalent to (2).

min{ L } (3)
subject to:

k T —

——<I>< >§L for k > nlL (4)
n o

T — [ k—1
P — <L fork<n(l—L)+1. (5)
o n
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Note that if % — L <0, constraint (4) is always true and if L + % > 1, constraint (5) is always
true. We can solve (3-5) by designing an algorithm that finds whether there is a feasible solution

to (4-5) for a given L.

For a given L, the constraints are equivalent to:

ugxk—q)_l(%—L)a for k > nL (6)
—1
,uzxk—CI)_l(L+kT)0’ for k <n(l—L)+1. (7)

Constraints (6) and (7) can be combined into one constraint each.

k
< mi Y S
o< gy {27 (5 2) o) ¥
> max {a; — ! (L + ko 1) O’} 9)
o= k<n(1—L)+1 F n

For a given o there is a solution for p satisfying the system of equations (8-9) if and only if

min {:Ek — 3! <E - L> 0} > max {:Ek — ¢! <L + il 1) 0} (10)
k>nL n k<n(1-L)+1 n

or

F(o,L) = gnin {azk — 3! (E - L) O’} — max)Jrl {azk — 3! (L + b 1) O’} > 0. (11)

>nlL n k<n(1-L

For a given L, the function F'(o, L) is a piece-wise linear concave function in o (see Figure 3). We

prove that F'(o, L) is a concave function in o for a given L.

Theorem 1: The function F(o,L) for a given L is concave in o.

13



Proof: All the functions in the braces of (11) are linear in o and all the other values are constants
for a given L. Furthermore, the minimum of linear functions is concave and the maximum of linear

functions is convex. Therefore, the difference F(o, L) is a concave function in o. O

By Theorem 1, for a given L, F(o, L) has only one local maximum which is the global one. The
maximum value of F(o, L) for a given L can be easily found by a search on o. For any value of o
F(o, L) can be calculated and if the slope is positive we know that the optimal o is to the right,
and if it is negative we know that it is to the left. The solution is always at the intersection point
between two lines, one with a positive slope and one with a negative slope (see figure 3). Megiddo

(1983) suggested a very efficient method for solving such a problem.
Figure (3) about here

Note that if F'(o, L) > 0, any p in the range

l max {xk — ¢! <L + E) 0} , min {xk — ! (E — L) O'}]
k<n(1—-L)+1 n k>nL n

(or specifically the midpoint of the range) with the o used in calculating F'(o, L) yields a KS statistic

which does not exceed L.

Let G(L) = max {F(0,L)} found by either the method in Megiddo (1983) or any other search
method. If G(L) > 0, there is a solution (u, o) for this value of L and if G(L) < 0 no such solution
exists. To find the minimum value of L we propose a binary search. The details of the binary
search are now described. The optimal L must satisfy L < KS(Z,s). Also, any KS statistic must
be at least % Therefore, % < L < KS(z,s). A binary search on any segment [a, b] is performed

as follows. G(L) for L = “TH’ is evaluated. If G(L) > 0, there is a solution (u,o) for this value

of L and the search segment is reduced to |a, “TH’] If G(L) < 0 no such solution exists and the

14



search segment is reduced to [“TH’, b]. In either case the search segment is cut in half. Following a

relatively small number of iterations, the search segment is reduced to a small enough range (such
as 107°) and the upper limit of the range yields a solution (u,0) and its value of L is within a

given tolerance (the size of the final segment) of the optimal value of L.
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Table 1: Critical Values for the Traditional and Modified KS Test

Traditional KS statistics

Modified KS statistics

Upper Tail Probabilities

Upper Tail Probabilities

0.20

0.15

0.10

0.05

0.01

0.001

0.20

0.15

0.10

0.05

0.01

0.001

0.3029
0.2894
0.2687
0.2523
0.2388

0.3215
0.3027
0.2809
0.2643
0.2503

0.3453
0.3189
0.2971
0.2802
0.2651

0.3753
0.3430
0.3234
0.3042
0.2880

0.4131
0.3967
0.3705
0.3508
0.3328

0.4327
0.4388
0.4232
0.4011
0.3827

0.2396
0.2000
0.1962
0.1855
0.1748

0.2436
0.2108
0.2046
0.1922
0.1810

0.2474
0.2255
0.2147
0.2006
0.1899

0.2499
0.2458
0.2286
0.2139
0.2038

0.2987
0.2763
0.2570
0.2435
0.2281

0.3518
0.3063
0.2945
0.2708
0.2502

0.2272
0.2171
0.2081
0.2003
0.1932

0.2381
0.2274
0.2181
0.2099
0.2025

0.2522
0.2410
0.2312
0.2224
0.2146

0.2741
0.2621
0.2514
0.2420
0.2335

0.3172
0.3035
0.2914
0.2807
0.2710

0.3657
0.3509
0.3375
0.3255
0.3146

0.1661
0.1591
0.1524
0.1462
0.1407

0.1727
0.1650
0.1578
0.1514
0.1457

0.1811
0.1725
0.1648
0.1580
0.1521

0.1932
0.1836
0.1753
0.1681
0.1627

0.2151
0.2045
0.1972
0.1902
0.1839

0.2418
0.2324
0.2240
0.2158
0.2081

0.1869
0.1811
0.1759
0.1710
0.1666

0.1958
0.1898
0.1843
0.1793
0.1746

0.2076
0.2012
0.1954
0.1900
0.1851

0.2259
0.2189
0.2126
0.2068
0.2015

0.2623
0.2543
0.2471
0.2404
0.2342

0.3048
0.2958
0.2875
0.2800
0.2729

0.1358
0.1314
0.1276
0.1243
0.1211

0.1406
0.1363
0.1325
0.1290
0.1257

0.1472
0.1428
0.1388
0.1351
0.1316

0.1576
0.1528
0.1485
0.1445
0.1407

0.1780
0.1725
0.1674
0.1628
0.1585

0.2012
0.1949
0.1893
0.1845
0.1799

0.1625
0.1587
0.1430
0.1312
0.1145

0.1703
0.1663
0.1499
0.1376
0.1200

0.1806
0.1763
0.1589
0.1458
0.1272

0.1965
0.1919
0.1730
0.1588
0.1385

0.2285
0.2232
0.2014
0.1849
0.1614

0.2663
0.2603
0.2351
0.2161
0.1889

0.1182
0.1154
0.1040
0.0955
0.0833

0.1226
0.1198
0.1079
0.0990
0.0864

0.1284
0.1254
0.1129
0.1036
0.0905

0.1372
0.1339
0.1207
0.1108
0.0967

0.1545
0.1510
0.1363
0.1251
0.1092

0.1756
0.1716
0.1547
0.1422
0.1242

0.1029
0.0943
0.0875
0.0820
0.0775

0.1078
0.0988
0.0917
0.0859
0.0812

0.1143
0.1047
0.0972
0.0911
0.0860

0.1245
0.1140
0.1058
0.0992
0.0937

0.1450
0.1328
0.1233
0.1156
0.1092

0.1699
0.1556
0.1445
0.1355
0.1279

0.0749
0.0687
0.0638
0.0598
0.0565

0.0777
0.0712
0.0661
0.0620
0.0586

0.0813
0.0745
0.0692
0.0649
0.0613

0.0869
0.0797
0.0740
0.0694
0.0655

0.0982
0.0900
0.0835
0.0783
0.0740

0.1116
0.1023
0.0950
0.0891
0.0841

100
400
900

0.0736
0.0373
0.0249

0.0771
0.0390
0.0261

0.0817
0.0414
0.0277

0.0890
0.0450
0.0301

0.1037
0.0524
0.0351

0.1216
0.0615

0.0411

0.0537
0.0273
0.0183

0.0557
0.0283
0.0190

0.0583
0.0296
0.0198

0.0623
0.0316
0.0212

0.0703
0.0356
0.0239

0.0799
0.0405
0.0271

Table 2: Coefficients for the approximate formulas

Traditional KS test

Modified Ks test

a

b

Cc

a

b

C

0.20
0.15
0.10
0.05
0.01
0.001

0.00053
0.00049
0.00059
0.00052
0.00054
0.00052

0.73574
0.77149
0.81689
0.89105
1.03964
1.22182

0.78520
0.78515
0.77062
0.79780
0.84912
0.99171

0.00060
0.00068
0.00062
0.00061
0.00055
0.00056

0.53446
0.55329
0.57999
0.62082
0.70276
0.79997

0.80443
0.76285
0.78034
0.81183
0.85751
0.89234
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Figure 1: Approximate powers (%) of six tests, i.e. the traditional Kolmogorov-Smirnov (¢), modified Kolmogorov-

Smirnov (4), Anderson-Darling (o), Cramer-Von Mises (e), Shapiro-Francia (A) and Pearson Chi-square (x).
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Figure 2: Rejection probabilities (%) of six tests, i.e. the traditional Kolmogorov-Smirnov (¢), modified Kolmogorov-

Smirnov (+), Anderson-Darling (o), Cramer-Von Mises (e), Shapiro-Francia (A) and Pearson Chi-square (x).
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F(o,L)

Figure 3: The Function F(o, L)
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